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In the field of probabilistic analysis, the concept of conditional probability plays a
major role for estimating probabilities when some partial information concerning the
result of the experiment is available. This paper presents a higher-order-logic definition
of conditional probability and the formal verification of some classical properties of
conditional probability, such as, the total probability law and Bayes’ theorem. This
infrastructure, implemented in the HOL theorem prover, allows us to precisely reason about
conditional probabilities for probabilistic systems within the sound core of HOL and thus
proves to be quite useful for the analysis of systems used in safety-critical domains, such
as space, medicine and transportation. To demonstrate the usefulness of our approach, we
provide the precise probabilistic analysis of the binary asymmetric channel, a widely used
concept in communication theory, within the HOL theorem prover.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Probabilistic analysis is a tool of fundamental importance for the analysis of hardware and software systems. These sys-
tems usually exhibit some random or unpredictable elements. Examples include failures due to environmental conditions
or aging phenomena in hardware components and the execution of certain actions based on a probabilistic choice in ran-
domized algorithms. Moreover, these systems act upon and within complex environments that themselves have certain
elements of unpredictability, such as noise effects in hardware components and the unpredictable traffic pattern in the
case of telecommunication protocols. Due to these random components, establishing the correctness of a system under all
circumstances usually becomes impractically expensive. The engineering approach to analyze a system with these kind of
unavoidable elements of randomness and uncertainty is to use probabilistic analysis. The main idea behind probabilistic
analysis is to mathematically model the random and unpredictable elements of the given system and its environment by
appropriate random variables. The probabilistic properties of these random variables are then used to estimate the probabil-
ities associated with events of interest, such as downtime, availability, number of failures, capacity, and cost. Thus, instead
of guaranteeing that the system meets some given specification under all circumstances, the probability that the system
meets this specification is reported.

Today, simulation is the most commonly used computer based probabilistic analysis technique. Most simulation software
provide a programming environment for defining functions that approximate random variables for probability distributions.
The random elements in a given system are modeled by these functions and the system is analyzed using computer sim-
ulation techniques [15], such as the Monte Carlo method [34], where the main idea is to approximately answer a query
on a probability distribution by analyzing a large number of samples. Due to the inherent nature of simulation, the proba-
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bilistic analysis results attained by this technique can never be termed as 100% accurate. Moreover, simulation requires an
enormous amount of CPU time for attaining meaningful estimates. We generally need to acquire hundreds of thousands of
samples to estimate the desired probabilistic quantities and this fact makes the simulation approach impractical when each
sample acquisition step involves extensive computations.

The precision and accuracy of hardware and software system analysis results has become imperative these days because
of the extensive usage of these systems in safety and financial critical areas, such as medicine, transportation and stock
exchange markets. One of the unfortunate incidents, related to the inaccurate probabilistic analysis of systems, is the loss of
the Mars Polar Lander [36] in December 1999. The Mars Polar Lander; a $165 million NASA spacecraft launched to survey
Martian conditions, is believed to be lost mainly because of its engine shutdown while it was still 40 meters above the
Mars surface. The engine shutdown happened due to the vibrations caused by the deployment of the lander’s legs, i.e., a
random behavior, that gave false indication that the spacecraft had landed. Some other such incidents related to inaccurate
or inadequate probabilistic analysis of systems include the loss of $125 million Mars Climate Orbiter [35] in 1998 and the
faulty operation of the fly-by-wire primary flight control software of a Boeing 777, operated by the Malaysia Airlines, in
August 2005 [9], which could have resulted in the loss of 177 passenger lives if the pilot had not manually taken over the
autopilot program in time. In order to avoid incidents like the ones mentioned above, simulation should not be solely relied
upon for the analysis of hardware and software systems that are supposed to be used in safety-critical domains.

The inaccuracy problem of simulation can be resolved by modeling the system behavior, including its random compo-
nents, in a precise logic and reasoning about probabilistic and statistical properties of the system using this precise model
in a mechanical theorem prover [10]. In this approach, random components are represented in the logic as random vari-
ables, which are basically functions that map the sample space of a random process to the real numbers. Higher-order
logic [17] is expressive enough to be able to model such functions and thus can be used in the above mentioned prob-
abilistic analysis approach. In fact, most of the commonly used random variables have been formalized in higher-order
logic and their corresponding probabilistic properties have been verified using interactive theorem proving techniques, see
[29,22,23] for example. This available formalization has been successfully used to conduct precise probabilistic analysis of
a number of real-world probabilistic analysis problems like the famous Stop-and-Wait protocol or the Coupon Collector’s
problem [30,26–28,25]. These results clearly demonstrate the usefulness and scalability of higher-order-logic theorem prov-
ing in the probabilistic analysis domain. But, the fact that the higher-order-logic formalization of many core probabilistic
analysis related mathematical foundations, such as stochastic process theory or Lebesgue integration theory, is still not avail-
able somewhat downplays its effectiveness. Thus, despite its benefits in terms of the precision of results, higher-order-logic
theorem proving is rarely used for probabilistic analysis as system designers and engineers do not want to indulge in the
formalization and verification tasks associated with core mathematical concepts.

In order to strengthen the higher-order-logic library of probabilistic analysis related mathematical foundations, this paper
presents an approach for formal reasoning about conditional probabilities of events in a theorem prover. Conditional proba-
bility is one of the most important concepts in probability theory. It refers to the probability of an event A in the sample
space S , given the occurrence of some other event B , also in S , and is mathematically defined as follows [32]

Pr(A|B) = Pr(A ∩ B)

Pr(B)
(1)

provided 0 < Pr(B), where Pr represents the probability function. Conditional probabilities are quite frequently used in sys-
tem analysis for estimating probabilities when some partial information concerning the result of the experiment is available.
The basic definition of Markov chains, which is one of the most widely used modeling technique in the area of probabilistic
analysis, is also based on the concept of conditional probabilities. Thus, the ability to formally reason about conditional
probabilities in a theorem prover would definitely allow us to handle a broader range of systems and properties in the
higher-order-logic theorem proving based probabilistic analysis approach, which to the best of our knowledge lacks this
capability up till now.

In this paper, we first present a higher-order-logic formalization of the definition of conditional probability given in
Eq. (1). Based on this formal definition, we also present the verification of some classical properties of conditional proba-
bility in the HOL theorem prover [18]. The primary motive behind selecting the HOL theorem prover is to be able to build
upon the existing probabilistic analysis related higher-order-logic formalization. The formally verified properties of condi-
tional probability not only ensure the correctness of our definition of conditional probability but also play a vital role in
conducting probabilistic analysis of systems involving conditional probabilities. These properties can be reused to reason
about conditional probabilities of a system and thus speed up the analysis process. In order to demonstrate the practical
effectiveness of the infrastructure for reasoning about conditional probabilities, developed in this paper, we utilize it to con-
duct the probabilistic analysis of a binary asymmetric channel [47], which is a widely used communication channel model
in coding and information theories.

The rest of the paper is organized is as follows: Section 2 provides a review of related work. Then, in Section 3, we
present some preliminaries including a brief introduction to the HOL theorem prover and an overview of modeling random
variables in higher-order logic and verifying their probabilistic properties in HOL. Next, in Section 4, we present our higher-
order-logic definition of conditional probability and the formal verification of some of its classical properties using the HOL
theorem prover. This is followed by the probabilistic analysis of the binary asymmetric channel in Section 5. Finally, we
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draw some conclusions in Section 6 and highlight the areas which can be targeted as potential future work based on the
infrastructure presented in this paper.

2. Related work

Due to inaccuracies introduced by the simulation based probabilistic analysis methods, many researchers around the
world are exploring the usage of formal methods [19] for probabilistic analysis. Probabilistic model checking [5,44] is a
rapidly emerging formal probabilistic analysis technique. Like traditional model checking, probabilistic model checking in-
volves the construction of a precise state-based mathematical model of the given random system, which is then subjected
to exhaustive analysis to verify if it satisfies a set of probabilistic properties formally expressed in some appropriate logic.
Numerous probabilistic model checking algorithms and methodologies have been proposed in the open literature, e.g., [1,
39], and based on these algorithms, a number of tools have been developed, e.g., PRISM [33] and VESTA [45]. Besides the
accuracy of the results, other promising features of probabilistic model checking include the ability to perform the analysis
automatically and to formally verify conditional probabilities related to systems. On the other hand, probabilistic model
checking is limited to systems that can be expressed as probabilistic finite state machines or Markov chains. Another major
limitation of the probabilistic model checking approach is state space explosion [12]. Similarly, to the best of our knowledge,
it has not been possible to precisely reason about statistical quantities, such as expectation and variance, using probabilis-
tic model checking so far. Some probabilistic model checkers, such as PRISM [33] and VESTA [45], offer the capability of
verifying expected values in a semi-formal manner. For example, in the PRISM model checker, the basic idea is to augment
probabilistic models with cost or rewards: real values associated with certain states or transitions of the model. This way,
the expected value properties, related to these rewards, can be analyzed. But it is important to note that the meaning as-
cribed to the these properties is, of course, dependent on the definitions of the rewards themselves and thus there is always
some risk of verifying false properties. Similarly, due to the state-based nature of model checking techniques, none of the
model checkers can verify generic mathematical expressions for statistical properties like expectation and variances, because
of their continuous nature.

The higher-order-logic theorem proving based probabilistic analysis approach, utilized in this paper, tends to overcome
the limitations of both the simulation and model checking based probabilistic analysis approaches. Due to the formal nature
of the models and properties and the inherent soundness of the theorem proving approach, probabilistic analysis carried
out in this way is free from any approximation and precision issues. Similarly, the high expressiveness of higher-order logic
allows us to analyze a wider range of systems without any modeling limitations, such as the state-space explosion problem
or the limitation to Markovian chain models.

The early foundations of probabilistic analysis in a higher-order-logic theorem prover were laid down by Nedzusiak [38]
and Bialas [8] when they proposed a formalization of some measure and probability theories in higher-order logic. Hurd
[29] implemented their work and developed a framework for the verification of probabilistic algorithms in the HOL theorem
prover. Random variables are basically probabilistic algorithms and thus can be formalized and verified, based on their
probability distribution properties, using the methodology proposed in [29]. In fact, building upon Hurd’s formalization,
most of the commonly used discrete [29] and continuous [22] random variables have been formalized in higher-order-logic
and their corresponding probabilistic [24] and statistical [23] properties have been verified using interactive theorem proving
techniques. These results have been successfully used to conduct precise probabilistic analysis of a number of applications,
such as computation algorithms [30,26], real-time systems [27], communication protocols [25] and wireless systems [28]. In
this paper, we extend the above mentioned formalization infrastructure available in the HOL theorem prover with the ability
to formally reason about conditional probabilities, a novelty that to the best of our knowledge has not been presented in
the open literature so far.

An alternative method for probabilistic verification in higher-order logic has been presented by Audebaud et al. [4]. In-
stead of using the measure theoretic concepts of probability space, as is the case in Hurd’s approach, Audebaud et al. based
their methodology on the monadic interpretation of randomized programs as probability distributions. The monads used in
this approach are restrictive than the ones used in Hurd’s approach but suffice for the given purpose. Audebaud’s approach
uses functional and algebraic properties of the unit interval and has been successfully used to verify a sampling algorithm
of the Bernoulli distribution and the termination of various probabilistic programs in the Coq theorem prover [13]. The in-
frastructure in this approach is not mature enough to be able to formally analyze real-world probabilistic analysis problems
as the mathematical foundations to support reasoning about continuous random variables and statistical properties does
not exist so far. Therefore, in this paper we have chosen to build upon Hurd’s formalization, which has more foundational
probabilistic analysis theories available.

3. Preliminaries

In this section, we provide a brief introduction to the HOL theorem prover and present an overview of Hurd’s method-
ology [29] for the verification of probabilistic algorithms. The intent is to introduce fundamental concepts along with some
notations that are going to be used in the rest of the paper.
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Table 1
HOL symbols and functions.

HOL symbol Standard symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation
⇒ implies that Logical implication
(a,b) a ∈ A ∧ B ∈ B ⇒ (a,b) ∈ AxB A pair of two elements
fst fst (a,b) = a First component of a pair
snd snd (a,b) = b Second component of a pair
λx.t λx.t Function that maps x to t(x)
{x|P(x)} {x|P (x)} Set of all x such that P (x)
{x|T} or UNIV U Universal set
{x|F} or { } ∅ Empty set
compl A Á Complement of set A
A subset B A ⊆ B A is a subset of B
A inter B A ∩ B A intersection B
A union B A ∪ B A union B
A diff B A − B Difference between sets A and B
disjoint A B A ∩ B = ∅ Sets A and B are disjoint
image f A { f (x) | x ∈ A} Set with elements f (x) for all x ∈ A
bigunion P {x | ∃S. S ∈ P , x ∈ S} Union of all sets in the set P

sum(0,k)(λn.f(n))
∑k−1

n=0 f (n) Sum of first k terms of sequence f

suminf(λn.f(n)) limk→∞
∑k

n=0 f (n) Infinite summation of f

summable(λn.f(n)) ∃x. limk→∞
∑k

n=0 f (n) = x Summation of f is convergent

3.1. HOL theorem prover

The HOL theorem prover is an interactive theorem prover which is capable of conducting proofs in higher-order logic.
It utilizes the simple type theory of Church [11] along with Hindley–Milner polymorphism [37] to implement higher-order
logic. HOL has been successfully used as a verification framework for both software and hardware as well as a platform for
the formalization of pure mathematics.

In order to ensure secure theorem proving, the logic in the HOL system is represented in the strongly-typed functional
programming language ML [41]. An ML abstract data type is used to represent higher-order-logic theorems and the only
way to interact with the theorem prover is by executing ML procedures that operate on values of these data types. The HOL
core consists of only 5 basic axioms and 8 primitive inference rules, which are implemented as ML functions. Soundness is
assured as every new theorem must be verified by applying these basic axioms and primitive inference rules or any other
previously verified theorems/inference rules.

HOL supports two types of interactive proof methods: forward and backward. In forward proof, the user starts with
previously proved theorems and applies inference rules to reach the desired theorem. In most cases, the forward proof
method is not the easiest solution as it requires the exact details of a proof in advance. A backward or a goal directed
proof method is the reverse of the forward proof method. It is based on the concept of a tactic, which is an ML function
that breaks goals into simple subgoals. In the backward proof method, the user starts with the desired theorem or the
main goal and specifies tactics to reduce it to simpler intermediate subgoals. Some of these intermediate subgoals can be
discharged by matching axioms or assumptions or by applying existing decision procedures. The above steps are repeated
for the remaining intermediate goals until we are left with no further subgoals and this concludes the proof for the desired
theorem.

The HOL theorem prover includes many proof assistants and automatic proof procedures [20] to assist the user in direct-
ing the proof. The user interacts with a proof editor and provides it with the necessary tactics to prove goals while some of
the proof steps are solved automatically by the automatic proof procedures.

In order to facilitate reutilization of verified theorems, HOL allows its users to store a collection of valid HOL types,
constants, axioms and theorems as a HOL theory file. Once stored, HOL theories can be loaded in the HOL system and
the corresponding definitions and theorems can be utilized right away. Thus, HOL theories allow us to build upon existing
results in an efficient way without going through the tedious process of regenerating these results using the basic axioms
and primitive inference rules. Various mathematical concepts have been formalized and saved as HOL theories by the HOL
users. Out of this useful library of HOL theories, we utilized the theories of Booleans, lists, sets, positive integers, real
numbers, measure and probability in this paper. In fact, one of the primary motivations of selecting the HOL theorem
prover for our work was to benefit from these built-in mathematical theories.

Table 1 provides the mathematical interpretations of some frequently used HOL symbols and functions, which are inher-
ited from existing HOL theories, in this paper.
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Table 2
Formally verified probability axioms.

Axiom HOL theorem

Probability Empty prob {s | F} = 0
Probability Universe prob {s | T} = 1
Probability Bounds ∀A. 0� prob(A) � 1
Probability Complement ∀A. prob(compl A) = 1− prob(A)

Probability Increasing ∀A B. A subset B⇒ prob(A) � prob(B)

Probability Additive ∀A B. (disjoint A B) ⇒ prob(A union B) = prob(A) + prob(B)

Probability Countably Additive ∀A i.(∀i j.(i �= j) ⇒ (disjoint Ai Aj)) ⇒ prob(bigunion Ai) = ∑
i prob(Ai)

3.2. Probabilistic analysis in HOL

Hurd [29] formalized some measure theory in higher-order logic to define a measure space as a pair (Σ,μ). In this
formalization, the sample space is the universal set of the appropriate type. Building upon this formalization, the probability
space was also defined as a pair (E ,P), where the domain of P is the set E , which is a set of subsets of infinite Boolean
sequences B

∞ . Both P and E are defined using the Carathéodory’s Extension theorem, which ensures that E is a σ -algebra:
closed under complements and countable unions.

Now, a random variable, which is one of the core concepts in probabilistic analysis, is fundamentally a probabilistic
function and thus can be modeled in higher-order logic as a deterministic function, which accepts the infinite Boolean
sequence as an argument. These deterministic functions make random choices based on the result of popping the top most
bit in the infinite Boolean sequence and may pop as many random bits as they need for their computation. When the
functions terminate, they return the result along with the remaining portion of the infinite Boolean sequence to be used
by other programs. Thus, a random variable which takes a parameter of type α and ranges over values of type β can be
represented in HOL by the function.

F : α → B∞ → β × B∞

As an example, consider the Bernoulli( 1
2 ) random variable that returns 1 or 0 with equal probability 1

2 . It can be formal-
ized in HOL as follows

� bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence equivalents of the list operations ‘head’ and
‘tail’. Now, we first focus upon the optimization of the above formalization of the Bernoulli( 1

2 ) random variable and will then
present the verification of our formalization, i.e., to formally prove that the function bit indeed models the Bernoulli( 1

2 )

random variable.
The probabilistic programs can be expressed in the more general state-transforming monad [6] where the states are the

infinite Boolean sequences.

� ∀ a s. unit a s = (a,s)

� ∀ f g s. bind f g s = g (fst (f s)) (snd (f s))

The unit operator is used to lift values to the monad, and bind is the monadic analogue of function application. All monad
laws hold for this definition, and the notation allows us to write functions without explicitly mentioning the sequence that
is passed around, e.g., function bit can be defined as

� bit_monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).
The second step in conducting probabilistic analysis of a system using a higher-order-logic theorem prover is to use

the formal model of the given system to express the probabilistic properties regarding the events of interest in the system
as higher-order-logic theorems and formally verify these theorems. For the verification task we usually need some basic
probability axioms and probabilistic properties of the random variables that are used to construct the systems model. The
formalized prob and E can be used to derive all the basic axioms of probability in the HOL theorem prover. For example,
some of the formally verified probability axioms are given in Table 2.

The formalized prob and E can also be used to prove probabilistic properties for random variables. For example, we can
formally verify the following probabilistic property for the function bit, defined above,

� prob {s | fst (bit s) = 1} =
1

2
where the function fst selects the first component of a pair. The above theorem verifies that the function bit essentially
models a Bernoulli( 1 ) random variable.
2
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As mentioned in Section 2, the infrastructure described above has been successfully used to model most of the discrete
and continuous random variables and verify their probabilistic and statistical properties. In this paper, we mainly extend
this infrastructure with the ability to reason about conditional probabilities.

4. Conditional probabilities in HOL

The notion of conditional probability involves the probability of an event, say A, given the information that an event
B has occurred. In order to understand the usage of conditional probability, consider the example of an integrated circuit
testing process where we test circuits in pairs. The concept of conditional probability allows us to compute the probability
of correctness of two integrated circuits given that the first integrated circuit in the pair was found to be faultless. It is
important to note that this probability would be different than the probability of both integrated circuits being accepted if
no information about the first integrated circuit acceptance is given. Conditional probabilities are widely used to characterize
systems in probabilistic analysis and can be computed using the mathematical relation given in Eq. (1). In this section, we
first provide a higher-order-logic formalization of the mathematical relation of Eq. (1) and then utilize this formal definition
of conditional probability to verify some of its classical properties in the HOL theorem prover.

The definition of conditional probability, given in Eq. (1), can be formally expressed in higher-order logic as follows

Definition 4.1. Conditional probability

�def ∀A B.
cond_prob A B =
if prob B = 0 then

0
else

prob (A inter B) / prob B

by inheriting the higher-order-logic formalization of the probability function from [29]. The function cond_prob accepts
two sets of infinite Boolean sequences A and B , corresponding to two events, and returns a real number that corresponds to
the conditional probability of the first event A given the second event B has occurred. Eq. (1) is only valid for the case when
0 < Pr(B). This information is integrated in Definition 4.1 using the if statement, which allows us to assign a value of 0 to
the conditional probability for the particular case when Pr(B) = 0. This way, we not only avoid the division by 0 scenario
but also return a reasonable conditional probability result for the case when Pr(B) = 0. For example, if we consider the
above mentioned example of testing a pair of integrated circuits, the probability of the event when we have both acceptable
circuits given that the first tested circuit has been accepted with (Pr(First circuit is acceptable) = 0) would be 0 according to
our definition, which is actually the case.

Using the above definition, we now verify some classical properties of conditional probabilities [32] within the HOL the-
orem prover. The formal proofs for these properties not only ensure the correctness of our conditional probability definition
but also play a vital role in reasoning about conditional probabilities of systems as will be seen in Section 5.

4.1. Conditional probability bounds

0 � Pr(A|B) � 1 (2)

According to this property, the value of conditional probability always remains within the closed interval [0,1]. It can be
expressed in higher-order logic, using our conditional probability definition, as follows.

Theorem 4.1.

� ∀A B. (0 � cond_prob A B) ∧ (cond_prob A B� 1)

We proceed with the proof of this theorem by rewriting it with Definition 4.1 along with some simple arithmetic rea-
soning and splitting it into the following two subgoals.

¬(prob B= 0) �⇒ 0� prob (A inter B)/prob B

¬(prob B= 0) �⇒ prob (A inter B)/prob B� 1

The first subgoal can now be proved using the probability axiom Probability Bounds, given in Table 2, along with some
arithmetic reasoning. While the first step in the proof of the subgoal 1.2 is to move its denominator to the other side of the
inequality as follows, using the given assumption and the Probability Bounds axiom.

¬(prob B= 0) �⇒ prob (A inter B) � prob B

The above subgoal can now be discharged using the Probability Increasing axiom, given in Table 2, since the set A inter
B can be verified to be a subset of the set B. This also concludes the proof of Theorem 4.1 in HOL.
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4.2. Conditional probability of the universal set

Pr(U|B) = 1 (3)

According to this property, the probability of the universal set (or the whole sample space) given that an event B has
occurred is 1. It can be expressed in higher-order logic, using our conditional probability definition, as follows

Theorem 4.2.

� ∀B. (0< prob B) �⇒ (cond_prob UNIV B= 1)

This theorem can be verified in HOL by rewriting with Definition 4.1 and using some arithmetic and set theoretic
reasoning. It is important to note that the property has been verified for the case when the probability of the given event
B is greater than 0 as the theorem does not hold for the case when Pr(B) = 0.

4.3. Conditional probability is countably additive

If Ai is a sequence of mutually exclusive events then

Pr

(( ∞⋃
i=1

Ai

)∣∣∣∣B

)
=

∞∑
i=1

Pr(Ai|B) (4)

According to this property, conditional probability exhibits the countably additive property axiom just like the probability
function. Theorems 1 and 2 along with this property show that conditional probability function exhibits all of the basic
properties of ordinary probabilities and hence is a probability measure [32]. The countably additive property of conditional
probability can be expressed in higher-order logic as follows.

Theorem 4.3.

� ∀A B. (∀i j. ¬(i= j) �⇒ disjoint (A i)(A j)) �⇒
(cond_prob (bigunion(image A UNIV)) B= suminf (λi. cond_prob (A i) B))

It is important to note here that variable A in the above theorem represents a sequence of sets rather than just a set
like in the previous two theorems. Thus, the assumption in Theorem 4.3 ensures that the sets in this sequence A are
mutually exclusive. The first argument of the function cond_prob corresponds to the set (

⋃∞
i=1 Ai) as (image A UNIV)

denotes the set {Ai | i ∈ N}, since UNIV is the countably infinite set of all possible natural numbers in this case. The function
bigunion, explained in Table 1, then takes the union of all these sets in the set (image A UNIV). The RHS of the equality
in Theorem 4.3 represents the infinite summation of the real sequence (λi.Pr(Ai |B)) using the HOL function suminf [21],
also explained in Table 1.

We proceed with the proof of this theorem by rewriting with the definition of the function cond_prob. This leads us
to the following subgoal after some basic arithmetic simplification.

(∀i j. (i= j) �⇒ disjoint (A i) (A j)) �⇒
prob ((bigunion(image A UNIV)) inter B) = suminf (λi. prob ((A i) inter B))

Now, based on some already verified set theoretic principles in HOL, the set ((bigunion (image A UNIV))
inter B) can be verified to be equal to (bigunion (image (λi. A i inter B)) UNIV). This leads us to rewrite
the above subgoal as follows.

(∀i j. ¬(i= j) �⇒ disjoint (A i) (A j)) �⇒
prob (bigunion (image (λi. A i inter B) UNIV)) = suminf (λi. prob ((A i) inter B))

The suminf in the above subgoal can be verified to exist and to be equal to the expression on the left-hand side using
the Countable additivity axiom of probability, formally proved by Hurd [29], since all sets (or events) in the set (image
(λi. A i inter B) UNIV) are disjoint using the given assumption. This also concludes the HOL proof for Theorem 4.3.



30 O. Hasan, S. Tahar / Journal of Applied Logic 9 (2011) 23–40
4.4. Complement axiom of conditional probability

Pr( Ā|B) = 1 − Pr(A|B) (5)

According to this property, a conditional probability follows the complement axiom just like the probability function. It can
be expressed in higher-order logic, using our conditional probability definition, as follows

Theorem 4.4.

� ∀A B. 0< prob B �⇒
(cond_prob (compl A) B= 1− cond_prob A B)

Rewriting the above theorem with Definition 4.1 along with some arithmetic reasoning we reach the following subgoal.

prob ((compl A)inter B) + prob (A inter B) = prob B

Since the two events on the left-hand-side (LHS) of the above subgoal are disjoint, the probability additive axiom, given
in Table 2, can be used to rewrite the above subgoal as follows.

prob (((compl A)inter B) union (A inter B)) = prob B

Now based on set theoretic reasoning the set on the LHS of the above subgoal can be verified to be equivalent to the set
B , which discharges the above subgoal from the goal stack and thus concludes the HOL proof for Theorem 4.4.

4.5. Difference axiom of conditional probability

Pr(A1 − A2|B) = Pr(A1|B) − Pr(A1 ∩ A2|B) (6)

This property allows us to express the probability of an event A1 − A2 (difference between the sets A1 and A2) given some
other event B without using the notion of set difference. It can be expressed in higher-order logic, using our conditional
probability definition, as follows.

Theorem 4.5.

� ∀A1 A2 B. cond_prob (A1 diff A2)B=
cond_prob A1 B− cond_prob (A1 inter A2)B

Rewriting the above theorem with Definition 4.1 along with some arithmetic reasoning we reach the following subgoal.

prob ((A1 diff A2) inter B) + prob (A1 inter A2 inter B) =
prob (A1 inter B)

Just like the proof of Theorem 4.3, the two events on the LHS of the above subgoal are disjoint and thus it can be verified
using the probability additive axiom along with some set theoretic reasoning.

4.6. Union axiom of conditional probability

Pr(A1 ∪ A2|B) = Pr(A1|B) + Pr(A2|B) − Pr(A1 ∩ A2|B) (7)

This property allows us to express the probability of an event A1 ∪ A2 (union of the sets A1 and A2) given some other event
B without using the notion of union. It can be expressed in higher-order logic, using our conditional probability definition,
as follows.

Theorem 4.6.

� ∀A1 A2 B. cond_prob (A1 union A2) B=
cond_prob A1 B+ cond_prob A2 B− cond_prob (A1 inter A2) B
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We proceed with the proof of this theorem by first using Theorem 4.4 to rewrite the right-hand side (RHS) of the above
goal as follows.

cond_prob (A1 union A2) B= cond_prob A2 B+ cond_prob (A1 diff A2)B

Now, rewriting with Definition 4.1 along with some arithmetic reasoning we reach the following subgoal.

prob ((A1 union A2) inter B) =
prob (A2 inter B) + prob ((A1 diff A2) inter B)

Like the previous two theorems, the two events on the RHS of the above subgoal are disjoint and thus it can now be
verified using the probability additive axiom along with some set theoretic reasoning.

4.7. Multiplication rule of probability

Pr(A ∩ B) = Pr(B)Pr(A|B) (8)

Sometimes also referred to as the theorem of compound probabilities, the multiplication rule of probabilities is quite often
found to be very useful for determining the probability that two events A and B will occur simultaneously. It can be
expressed in higher-order logic, using our conditional probability definition, as follows.

Theorem 4.7.

� ∀A B. prob (A inter B) = (prob B) ∗ (cond_prob A B)

The first step for proving Theorem 4.7 in HOL is to rewrite with the definition of conditional probability. This step
generates the following two subgoals after some arithmetic simplification.

¬(prob B= 0) �⇒ prob (A inter B) =
prob B ∗ (prob (A inter B) / prob B)

(prob B= 0) �⇒ prob (A inter B) = 0

The first subgoal can be proved in a very straightforward way using arithmetic reasoning. Whereas, the second subgoal
can be proved based on the fact that (A ∩ B) ⊂ B . Using this result along with the given assumption and the probability
axioms probability increasing and probability bounds, given in Table 2, allows us to discharge the second subgoal from the
HOL goal stack and thus conclude the proof of Theorem 4.7.

4.8. Total probability theorem

For a finite, mutually exclusive, and exhaustive sequence Bi of events and an event A,

Pr(A) =
m∑

i=1

Pr(Bi)Pr(A|Bi) (9)

The law of total probability is a useful tool for breaking down the computation of a probability into a number of distinct
cases. It can be expressed in higher-order logic, using our conditional probability definition, as follows.

Theorem 4.8.

� ∀A B m. (bigunion (image B {n | n< m}) = UNIV) ∧
(∀i j. i< m∧ j< m∧ ¬(i= j) �⇒ disjoint (B i)(B j)) �⇒

(prob A= sum (0, m) (λi. prob (B i) ∗ cond_prob A (B i)))

The variable A in the above theorem represents an event, whereas B represents a sequence of sets. The first assumption
ensures that the first m elements of the sequence B are exhaustive, i.e., their union gives the sample space or the universal
set. Whereas, according to the second assumption in Theorem 4.8, the first m sets in sequence B are mutually exclusive. The
RHS of the equality in Theorem 4.8 represents the summation of the first m terms of the real sequence (λi.Pr(Bi)Pr(A|Bi))

using the HOL function sum [21], given in Table 1.
We verified Theorem 4.8 in HOL using case analysis on the variable m, i.e., splitting the goal into two subgoals for the

cases when m is equal to 0 and m + 1.
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(bigunion (image B {n | n< 0}) = UNIV) �⇒ (prob A= 0)

(bigunion (image B {n | n< (m+ 1)}) = UNIV) ∧
(∀i j. i< (m+ 1) ∧ j< (m+ 1) ∧ ¬(i= j) �⇒
disjoint (B i) (B j)) �⇒

(prob A= sum (0, (m+ 1))′ (λi. prob (B i) ∗ cond_prob A(B i)))

The first subgoal can be verified because of the False assumption. While the step case can be verified using the definition
of conditional probability, Theorem 4.7 and the probability additive axiom along with some set theoretic principles.

4.9. Bayes’ law

Pr(A|B) = Pr(B|A)Pr(A)

Pr(B)
(10)

Bayes’ law [32], named after the famous English philosopher Thomas Bayes, relates the conditional and marginal proba-
bilities of two random events. In probabilistic analysis, posterior probabilities under some given observations are usually
computed using Bayes’ law. It can be expressed in higher-order logic, using our conditional probability definition, as follows.

Theorem 4.9.

� ∀A B. (0< prob B) �⇒
cond_prob A B= ((cond_prob B A) ∗ (prob A) / (prob B))

The first step for proving Theorem 4.9 in HOL is to rewrite the numerator using multiplication rule of probability, given in
Theorem 4.7.

(0< prob B) �⇒ (cond_prob A B= (prob (B inter A)) / prob B)

The above subgoal can now be proved based on the definition of conditional probability and the commutativity property
of intersection.

An alternate and more general form of Bayes’ law can be expressed as follows [32]

Pr(Ai |B) = Pr(B|Ai)Pr(Ai)∑m
i=1 Pr(B|Ai)Pr(Ai)

(11)

for a finite sequence of exhaustive and mutually exclusive events A. This general form can also be verified in HOL using the
proof steps of Theorem 4.9 along with the total probability theorem, given in Theorem 4.8. The corresponding HOL theorem
is as follows.

Theorem 4.10.

� ∀A B m k. (bigunion (image A {n | n< m}) = UNIV) ∧
(∀i j. i< m∧ j< m∧ ¬(i= j) �⇒ disjoint (A i)(A j)) ∧
(0< prob B) ∧ (k< m) �⇒

(cond_prob (A k) B=
((prob (A k) ∗ (cond_prob B (A k)))

(sum (0, m) (λi. prob (A k) ∗ cond_prob B (A k)))))

This concludes our formalization of conditional probabilities. The verification of the above classical properties clearly
indicates the correctness of our formal definition of conditional probability, given in Definition 4.1. Similarly, the formally
verified theorems corresponding to the classical properties explicitly state all the conditions and requirements (assumptions)
under which they hold, which is usually not the case when we look at the corresponding properties in paper-and-pencil
verification based mathematical texts. These kind of assumptions play a vital part in the precise analysis of systems as they
ensure the system correctness under the right set of constraints. The main contribution of the presented formalization is
to pave the path for reasoning about conditional probabilities in a sound environment of a theorem prover. Our results can
be directly built upon to formally reason about many safety-critical systems involving the domains of telecommunications,
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Fig. 1. Binary asymmetric channel with crossover probabilities.

computation algorithms and faults in hardware designs. For illustrating the utilization and effectiveness of the formalization,
presented in this section, we utilize it to analyze a binary symmetric communication channel in the next section.

Our formalization can also be utilized to formalize more advance probabilistic analysis concepts like Markov chains. In
this case, Definition 4.1 can be used to formalize the definition of Markov chain and then the formally verified properties
of conditional probabilities, given in Theorems 4.1 to 4.10, can be used to verify Markov chains properties, such as, Joint
probability, Chapman–Kolmogrove Equation and Absolute probability [7]. We are currently working on this extension and,
once done, it will significantly broaden the horizon of theorem proving based formal probabilistic analysis by many folds.

5. Binary asymmetric channel analysis

A binary asymmetric channel is a noisy channel model for the case when the transmitter and receiver stations are
capable of transmitting and receiving only two types of signals denoted by 0 and 1; usually termed as bits. Due to the
channel noise there is a chance that the transmitted bit may be flipped when it reaches the receiver, i.e., a transmitted 0 is
sometimes received as a 1 and a transmitted 1 is received as a 0. The error probabilities, usually referred to as the crossover
probabilities, that govern the flipping of a bit are often known for a given channel in advance. Fig. 1 illustrates the binary
asymmetric channel with p10 denoting the error probability when a transmitted 0 is flipped to a 1, Pr(Y = 1|X = 0), during
a transmission and p01 the error probability when a transmitted 1 is flipped to a 0, Pr(Y = 0|X = 1), during transmission. If
crossover probabilities are equal (p10 = p01), then the channel is termed as the binary symmetric channel, which is a special
case of the binary asymmetric channel.

Like the crossover probabilities, the probability of transmitting a 1 or a 0 is also known in advance as we usually have
an idea of the transmitting patterns. On the other hand, probabilities such as the ones associated with the identity of the
received bits, successful transmission and unsuccessful transmission are not known. These unknown probabilistic quantities
play a vital role in estimating performance or reliability of the given channel and are thus obtained by conducting the
probabilistic analysis of the binary asymmetric channel model, given in Fig. 1.

A binary asymmetric channel holds a significant place in probabilistic analysis of systems as being able to transmit effec-
tively over the binary asymmetric channel can give rise to solutions for more complicated system behaviors. The examples
of its usage in modeling and analyzing systems range from simple systems, such as a CD player reading from a scratched
music CD, or a wireless cell phone capturing a weak signal from a far away relay tower, to more complicated ones, such
as for complicated communication channels [48] or Bluetooth wireless networks [16]. Because of its widespread usage, a
number of paper-and-pencil or simulation based probabilistic analysis of the binary asymmetric channel can be found in
the literature. A couple of examples can be found in [46,2]. On the other hand, to the best of our knowledge, higher-order-
logic theorem proving has never been used for the analysis of a binary channel mainly because of the inability to reason
about conditional probabilities in a theorem prover so far. In this paper, we build upon the conditional probability theorems,
presented in the previous section, to analyze the binary asymmetric channel model, given in Fig. 1. This exercise, not only
illustrates the utilization of the theorems described in the previous section for conducting probabilistic analysis of systems
but also, provides the foundational framework for the analysis of more complex systems that utilize the binary asymmetric
channel model for their analysis.

The first step in the theorem proving based probabilistic analysis of the binary asymmetric channel is to formalize
the problem in higher-order logic. We have four elements of randomness in this system: the transmitter output (X ), re-
ceiver input (Y ), error in bit 1 and error in bit 0. All these elements have two possible outcomes. Both X and Y can be
0 or 1. Similarly, the error during transmission could happen or not. These random elements can thus be modeled using
the Bernoulli(p) random variable, which represents the coin flip experiment (has two possible outcomes) with the prob-
ability of head being p. Therefore, for the higher-order-logic modeling of the binary asymmetric channel, we utilize the
higher-order-logic function for the Bernoulli random variable, prob_bern, given in [29] and modeled using the method-
ology summarized in Section 3. This function outputs a True with the probability equal to its first argument. The function
prob_bern has been verified to be correct by proving its probability mass function (PMF) in the HOL theorem prover [29].
The corresponding higher-order-logic theorem is as follows.

Theorem 5.1.

� ∀p. 0� p∧ p� 1 �⇒ (prob {s | fst (prob_bern p s)} = p)
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It is important to note that the function prob_bern models the Bernoulli(p) and is more general than the Bernoulli( 1
2 )

random variable, described in Section 3, for which the success probability is always equal to 1/2. The transmitter output
random variable (X ) and the receiver input random variable (Y ) are Bernoulli random variables that are equal to 1 with a
known probability, say px and p y , respectively. This behavior can be expressed in higher-order logic, using the formalized
Bernoulli(p) random variable function, as follows.

Definition 5.1. Binary asymmetric channel transmitter/receiver

�def ∀p_x. bac_tr p= bind (prob_bern p) (λa. unit (if a then 1 else 0))

The function bac_tr accepts a real number p, which represents the probability of success for the Bernoulli(p) random
variable, and returns a natural number, which is either equal to 0 or 1.

The output of the transmitter channel (X ) can now be modeled by instantiating function bac_tr with probability px ,
whereas the input random variable to the receiver (Y ) can be modeled by instantiating function bac_tr with probability
p y . It is important to note that, in the case of the receiver random variable, the exact probability for obtaining a 1 is not
known upfront and needs to be computed in the analysis.

In the next few subsections, we utilize the above definition to formally specify various useful probabilistic quantities
for the binary asymmetric channel in higher-order logic and verify their corresponding mathematical relations, using the
theorems given in Section 4.

5.1. Probability of successful reception of a bit

We first verify the probability expressions for successful reception of a bit, i.e., the probability that bit x is received given
that bit x was transmitted across the channel. These probabilities can be mathematically expressed as follows.

Pr(Y = 1|X = 1) = 1 − p01 (12)

Pr(Y = 0|X = 0) = 1 − p10 (13)

where p01 and p10 represent the conditional probabilities of receiving a 0 given that a 1 was transmitted and vice versa,
respectively. The probabilistic relation for successfully receiving bit 1 can be expressed as a higher-order-logic theorem as
follows.

Theorem 5.2.

� ∀p_x p_y p_01. 0< p_x∧ p_x< 1∧
(cond_prob {s | fst (bac_tr p_y s) = 0}

{s | fst (bac_tr p_x s) = 1} = p_01) �⇒
(cond_prob {s | fst (bac_tr p_y s) = 1}

{s | fst (bac_tr p_x s) = 1} = 1− p_01)

The first two assumptions in the above theorem ensure that the probability of transmitting a 1 from the transmitter,
px , is greater than 0 and less than 1 and thus, omitting the chances of transmitting a sequence of 0’s or 1’s at all times.
The third assumption represents the mathematical expression Pr(Y = 0|X = 1) = p01, obtained from our reference model
given in Fig. 1. The conclusion of the above theorem represents the mathematical expression Pr(Y = 1|X = 1), which is the
probability of successfully receiving the bit 1 given that bit 1 was transmitted.

Based on the given assumptions and the PMF of the Bernoulli random variable, given in Theorem 5.1, it can be verified
that 0 < prob {s | fst (bac_tr p_x s) = 1}. This result along with the complement law of conditional probability,
verified in Theorem 4.4, can be used to rewrite Theorem 5.2 as follows.

0< p_x∧ p_x< 1 �⇒
(cond_prob {s | fst (bac_tr p_y s) = 1}

{s | fst (bac_tr p_x s) = 1} =
(cond_prob (compl {s | fst (bac_tr p_y s) = 0})

{s | fst (bac_tr p_x s) = 1}))
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The new subgoal can now be discharged from the HOL goal stack by proving that the set {s | fst (bac_tr
p_y s) = 1} is equivalent to the set (compl {s | fst (bac_tr p_y s) = 0}) using the definition of the func-
tion bac_tr along with some set theoretic principles. This also concludes the proof for Theorem 5.2. Similarly, the
successful reception probability for the bit 0, given in Eq. (13), can also be formally verified.

5.2. Received bit probabilities

In this section, we formally verify the following probability expressions for receiving a 1 or a 0 at the receiver of the
binary asymmetric channel.

Pr(Y = 1) = p10(1 − px) + (1 − p01)px (14)

Pr(Y = 0) = (1 − p10)(1 − px) + p01 px (15)

The probability of receiving a 1, which is actually equal to the unknown probability p y based on the result of Theorem 5.1
and is given in Eq. (14) above, can be expressed in higher-order logic as follows.

Theorem 5.3.

� ∀p_x p_y p_01 p_10. 0< p_x ∧ p_x < 1∧
(cond_prob {s | fst (bac_tr p_y s) = 0}

{s | fst (bac_tr p_x s) = 1} = p_01) ∧
(cond_prob {s | fst (bac_tr p_y s) = 1}

{s | fst (bac_tr p_x s) = 0} = p_10) �⇒
(prob {s | fst (bac_tr p_y s) = 1} =

p_10 ∗ (1− p_x) + (1− p_01) ∗ p_x)

We proceed with the proof of this theorem by rewriting and simplifying the proof goal using the successful transmission
probability of bit 1, given in Theorem 5.2, and the PMF of the Binomial random variable, given in Theorem 5.1, as follows.

prob {s | fst (bac_tr p_y s) = 1} =
(cond_prob {s | fst (bac_tr p_y s) = 1}

{s | ¬fst (bac_tr p_x s) = 1}) ∗
(prob{s | ¬fst (bac_tr p_x) = 1}) +

(cond_prob {s | fst (bac_tr p_y s) = 1}
{s | fst (bac_tr p_x s) = 1}) ∗

(prob {s | fst (bac_tr p_x) = 1})
The statement of the above subgoal is very closely related to the total probability theorem, given in Theorem 4.8. Therefore,

Theorem 4.8 can be used to verify the above subgoal if the expression on its RHS can be represented as a summation of
real sequence. This desired form for the RHS can be obtained using some simple arithmetic reasoning and is given below.

prob {s | fst (bac_tr p_y s) = 1} =
sum (0,2)

(λi.

prob

((λm.

(if m= 0 then

{s | ¬fst (bac_tr p_x s) = 1}
else

(if m= 1 then
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{s | fst (bac_tr p_x s) = 1}
else

{s | F}))) i) ∗
cond_prob {s | fst (bac_tr p_y s) = 1}

((λm.

(if m= 0 then

{s | ¬fst (bac_tr p_x s) = 1}
else

(if m= 1 then

{s | fst (bac_tr p_x s) = 1}
else

{s | F}))) i))

Now, Theorem 4.8 can be used to discharge the above goal from the HOL goal stack by verifying the mutually exclusiveness
and exhaustiveness of the given real sequence based on some arithmetic and set theoretic reasoning. This step concludes
the verification of Theorem 5.3. Following similar reasoning as above, we also verified the probability expression of receiving
a 0 at the receiver of the binary asymmetric channel, given in Eq. (15).

5.3. Probability of successful transmission of a bit

In this section, we verify the following probability expressions for successful transmission of a bit, i.e., the probability
that bit x is transmitted given that bit x was received from the channel.

Pr(X = 1|Y = 1) = (1 − p10)px

p10(1 − px) + (1 − p01)px
(16)

Pr(X = 0|Y = 0) = (1 − p10)(1 − px)

(1 − p10)(1 − px) + p01 px
(17)

The probabilistic relation for successfully transmitting bit 1 across the binary asymmetric channel can be expressed as a
higher-order-logic theorem as follows.

Theorem 5.4.

� ∀p_x p_y p_01 p_10. 0< p_x∧ p_x < 1∧
(cond_prob {s | fst (bac_tr p_y s) = 0}

{s | fst (bac_tr p_x s) = 1}′ = p_01) ∧
(cond_prob {s | fst (bac_tr p_y s) = 1}

{s | fst (bac_tr p_x s) = 0} = p_10) ∧
(0 < p_10∨ p_01< 1) �⇒

(cond_prob {s | fst (bac_tr p_x s) = 1}
{s | fst (bac_tr p_y s) = 1} =

(1− p_01) ∗ p_x ∧ (p_10 ∗ (1− p_x) + (1− p_01) ∗ p_x))

A new assumption (0 < p_10 ∨ p_01 < 1) has been added in the above theorem besides the ones used previously.
This assumption is used to prevent the scenario when bit 1 is never received. The conclusion of the above theorem repre-
sents the mathematical expression Pr(X = 1|Y = 1), which is the desired probability of transmission of bit 1 given that bit
1 was received.

The denominator of the expression on the RHS of Theorem 5.4 is basically the probability of receiving a bit 1, as given by
Theorem 5.3. Whereas, the first expression in the numerator of Theorem 5.4, (1 - p_01), is the probability of successful
reception of bit 1, given in Theorem 5.2. Thus, rewriting with Theorems 11, 12 and 14 we get the following simplified
version of the given theorem.
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0< p_x ∧ p_x< 1 ∧ (0< p_10∨ p_01< 1) �⇒
(cond_prob {s | fst (bac_tr p_x s) = 1}

{s | fst (bac_tr p_y s) = 1} =
(cond_prob {s | fst (bac_tr p_y s) = 1}

{s | fst (bac_tr p_x s) = 1}) ∗
(prob {s | fst (bac_tr p_x s) = 1})

(prob {s | fst (bac_tr p_y s) = 1}))
The above subgoal can now be verified by instantiating Bayes’ law, verified in Theorem 4.10, with the two sets involved.

This also concludes the proof for Theorem 5.4. Similarly, we also verified the successful transmission probability expression
for bit 0, given in Eq. (17).

5.4. Channel error probability

Finally, we formally verify an expression for the probability of error in the binary asymmetric channel model. Error occurs
when a transmitted 1 is received as a 0 or a transmitted 0 is received as a 1 and thus the corresponding mathematical
expression is as follows.

Pr
(
(Y = 0 ∧ X = 1) ∨ (Y = 1 ∧ X = 0)

) = p01p_x + p10(1 − px) (18)

This probability can be formalized using our definitions as follows.

Theorem 5.5.

� ∀p_x p_y p_01 p_10. 0< p_x ∧ p_x< 1∧
(cond_prob {s | fst (bac_tr p_y s) = 0}

{s | fst (bac_tr p_x s) = 1} = p_01) ∧
(cond_prob {s | fst (bac_tr p_y s) = 1}

{s | fst (bac_tr p_x s) = 0} = p_10) �⇒
(prob {s | (fst (bac_tr p_y s)′ = 0∧

fst(bac_tr p_x s) = 1) ∨
(fst (bac_tr p_y s) = 1∧
fst (bac_tr p_x s) = 0)} =

p_01 ∗ p_x+ p_10 ∗ (1− p_x))

We can use the probability additive axiom, due to the disjoint nature of the events in the set on the LHS of the conclusion,
along with the multiplication rule of probability, verified in Theorem 4.7, and some set theoretic principles to simplify the
proof goal of Theorem 5.5 as follows.

0< p_x∧ p_x< 1 ∧
(cond_prob {s | fst (bac_tr p_y s) = 0}

{s | fst (bac_tr p_x s) = 1} = p_01) ∧
(cond_prob {s | fst (bac_tr p_y s) = 1}

{s | fst (bac_tr p_x s) = 0} = p_10) �⇒
((prob {s | fst (bac_tr p_x s) = 1}) ∗
(cond_prob {s | fst (bac_tr p_y s) = 0}

{s | fst (bac_tr p_x s) = 1}) +
(prob {s | fst (bac_tr p_x s) = 0}) ∗
(cond_prob {s | fst (bac_tr p_y s) = 1}
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{s | fst (bac_tr p_x s) = 0}) =
p_01 ∗ p_x + p_10 ∗ (1− p_x))

This subgoal can now be discharged from the HOL goal stack by simplifying based on the given assumptions and the
PMF of the Bernoulli random variable, given in Theorem 5.1, along with some arithmetic reasoning. This also concludes the
verification of Theorem 5.5.

The above results clearly demonstrate the effectiveness of the proposed theorem proving based probabilistic analysis
approach for reasoning about conditional probabilities. Due to the formal nature of the model and inherent soundness of
theorem proving, we have been able to verify the probabilistic properties of interest regarding the given binary asymmetric
channel with 100% precision; a novelty which is not available in simulation. Similarly due to the high expressiveness of
higher-order logic, we have been able to verify generic properties that are valid for all values of cross-over and transmis-
sion probabilities; something that cannot be done in probabilistic model checking. For instance, the proposed approach is
also superior than the paper-and-pencil proof methods in a way as the chances of making human errors, missing critical
assumptions and proving wrongful statements are almost nil since all proof steps are applied within the sound core of the
HOL theorem prover. These additional benefits come at the cost of the time and effort spent, while constructing the formal
model of the system and formally reasoning about its properties, by the user. But, the formally verified classical conditional
probability related properties, presented in this paper, lead to a significant reduction in the interactive verification effort. For
example, the binary asymmetric channel analysis, presented in this section, only consumed approximately 40 man-hours
and 800 lines of HOL code by an expert user, mainly because the analysis utilizes the theorems given in Section 4.

6. Conclusions

Conditional probability is one of the most widely used probabilistic analysis concepts. It allows us to estimate prob-
abilities when some partial information concerning the result of the experiment is available. This paper presents an
infrastructure that can be used to reason about conditional probabilities in a higher-order-logic theorem prover, which
to the best of our knowledge was not possible as of now. The primary motivation behind this work is to augment the
higher-order-logic theorem proving based probabilistic analysis with this new capability in order to be able to precisely
analyze a broader range of systems and properties. The precision and accuracy of the probabilistic analysis results attained
with this approach in turn proves to be very useful for the performance and reliability optimization of safety critical and
highly sensitive engineering and scientific applications.

In this paper, we provided a higher-order logic definition of the mathematical concept of conditional probability. Then,
we utilized this definition to verify some classical conditional probability properties in a higher-order logic theorem prover
(HOL). It is important to note here that the ideas presented in this paper are not specific to the HOL theorem prover and
can be adapted to any other higher-order-logic theorem prover as well, such as Isabelle [40], Coq [13] or PVS [42]. The
formally verified conditional probability properties not only ensure the correctness of the proposed conditional probability
definition but also play a vital part in reasoning about conditional probabilities while conducting probabilistic analysis of
systems. In order to illustrate the practical effectiveness of these formally verified properties, we illustrated their usage for
the probabilistic analysis of a binary asymmetric channel.

The formalization and verification results, presented in this paper, are quite general and thus can serve as a foundational
building block for the development of many theorem proving based probabilistic analysis techniques and can be utilized
for the precise analysis of a wide range of engineering and scientific applications. Markov chains [49] is one of the most
commonly used probabilistic modeling method in areas like Physics, Queueing Theory, Internet applications and statistical
testing. The basic definition of a Markov chain is based on the concept of conditional probabilities and thus our results can
be built upon to develop an infrastructure for representing and analyzing Markov chains in a theorem prover. Another useful
probabilistic approach that relies heavily on the concept of conditional probabilities, and thus can be developed in a theo-
rem prover based on the work presented in this paper, is computer system reliability analysis [3]. Similarly, our results can
be utilized for the formalization of some fundamental probabilistic analysis concepts, such as conditional probability dis-
tribution, conditional independence, conditional expectation and conditional variance [43]. The formalization infrastructure,
presented in this paper, can also be used as is for the analysis of a number of interesting applications, such as communi-
cation channels [48,16], algorithms for computation problems like the Best Prize problem [43], and fault detection schemes
for hardware designs [14,31].

For our verification, we utilized the HOL theories of Boolean algebra, sets, lists, natural and real numbers, real analysis,
measure and probability. This set of theories is a good representation of the state-of-the-art in formalized mathematics.
Thus, our results can be considered as a useful case study for demonstrating the capabilities of automated reasoning and
illustrating its usefulness. Summarizing our experiences as far as this exercise is concerned, we can say that formalizing
mathematics in a mechanical system is a tedious work that requires deep understanding of both mathematical concepts
and theorem-proving. The HOL automated reasoners aid somewhat in the proof process by automatically verifying some
of the first-order-logic goals but most of the times we had to guide the tool by providing the appropriate rewriting and
simplification rules. On the other hand, we found theorem-proving very helpful in book keeping. Another major advantage
of theorem proving is that once the proof of a theorem is established, due to the inherent soundness of the approach, it is
guaranteed to be valid and the complete proof details can be readily accessed, contrary to the case of paper-pencil proofs
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where we may have to explore an enormous amount of mathematical literature to find proof details. For example, in the
proofs presented in this paper, we utilized theorems from mathematical theories but still the detailed proof steps can be
readily traced down to the level of 5 basic axioms or 8 primitive inference rule of the HOL system, whereas, it is very hard
to find one text book that provides the detailed mathematical proofs of all the mathematical facts that are utilized in our
proofs. Thus, it can be concluded that theorem-proving is a tedious but promising field, which can help mathematicians to
cope with the explosion in mathematical knowledge and to save mathematical concepts from corruption. Also, there are
areas, such as security critical software, in military or medicine applications for example, where theorem-proving will soon
become a dire need.
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